近年来深度学习在人工智能领域飞速发展,各行业的学者、研究人员纷纷涌入研究热潮。本文将从 R 语言角度来介绍深度学习并解决以下几个问题:

  • 什么是深度学习?
  • 相关深度学习包有哪些?
  • 如何配置工作环境?
  • 如何使用神经网络建立模型?

并在文末给出一些学习资料供大家参考、学习。

简介

深度学习是机器学习领域一个新的研究方向,通过模型模拟人类大脑的神经连接结构,进而给出数据的解释。图 1 给出了人工智能、机器学习和深度学习三者的关系。

深度学习之所以被称为 “深度”,是相对于其他”浅层”学习的方法(支持向量机、提升方法 、最大熵方法等)而言的。浅层学习依靠人工经验抽取样本特征,网络模型学习后获得的单层或双层的特征;而深度学习通过对原始数据进行逐层特征变换,将样本在原空间的特征表示变换到新的特征空间,自动地学习得到层次化的特征表示,从而更有利于分类或特征的可视化。

图1:人工智能、机器学习和深度学习的关系1

目前,深度学习已经被应用于诸多领域中,例如:医疗保健、社会网络分析、音频和语音处理(识别和增强)、视觉数据处理方法(多媒体数据分析和计算机视觉)、自然语言处理(翻译和句子分类)等。

R 语言深度学习

随着 R 的不断发展,利用 R 进行深度学习比以往更容易。并且 R 易学易用,不要求很扎实的编程基础,如今它被广泛地应用于机器学习实践和教学中。即使对 R 语言不是很了解的用户也可以通过一些包来搭建深度学习网络。

CRAN 的机器学习与统计学习任务视图中与 R 语言深度学习相关的第三方包有:

R 包 描述
nnet 构建单隐藏层的前馈神经网络,多项对数线性模型。
h2o H2O 的 R 脚本功能。
RSNNS Stuttgart 神经网络模拟器(SNNS)接口。
tensorflow TensorFlow 接口。
deepnet R 中的深度学习工具包(前馈神经网络,受限的玻尔兹曼机,深度信念网络,堆叠的自编码器)。
RcppDL 实现多层的机器学习方法,包括去噪自编码器,堆叠去噪自编码器,限制玻尔兹曼机和深度信念网络。
torch 实现 libtorch 库的接口。

如果读者对这些包感兴趣,可以直接点击名称进入学习。或者阅读程显毅老师的中文书籍《深度学习与 R 语言》,该书介绍了各种 R 语言深度学习包并结合实例分析。

本文主要使用深度学习框架 Keras,并将 TensorFlow 作为后端引擎。与其他包相比,Keras 的优点在于它的易用性。它是最流行和发展最快的深度学习框架之一,被广泛推荐为入门深度学习的最佳工具。它能够在 TensorFlow,CNTK,Theano 或 MXNet 上运行。

配置工作环境

在使用 R 进行深度学习前,需要在系统上安装以下东西:

  • R 和 RStudio
  • TensorFlow
  • Keras

本文默认读者为 R 语言爱好者,已经安装好了 R 和 RStudio。并且 Anaconda 的安装,也不将在本文介绍,需要读者自行解决。

  • 安装 TensorFlow 包:
install.packages("tensorflow")

如果在上一步中尚未安装 Anaconda,此时将被要求安装 Miniconda。 读者需要接受并等待所有软件包安装。

  • 使用 install_tensorflow() 函数安装 TensorFlow。
library(tensorflow)
install_tensorflow()
  • 确认是否安装成功:
library(tensorflow)
tf$constant("Hellow Tensorflow")
## tf.Tensor(b'Hellow Tensorflow', shape=(), dtype=string)

此时,默认安装了适用于 R 的 TensorFlow 版本。

  • 安装并加载 keras 包:
install.packages('keras')
library(keras)
install_keras()

默认安装 CPU 版本的 Keras。如果需要安装 GPU 版本,则应使用此命令:

install_keras(tensorflow = 'gpu')
  • 确认是否安装成功:
packageVersion('keras')
packageVersion('tensorflow')

当工作环境搭建完毕后,就可以开始利用 R 语言做深度学习了。

简单神经网络建模

本节将从一个简单的回归例子来介绍如何在 R 中使用 keras 包进行深度学习。

该案例是在 CPU 下进行的。如果你的设备有 GPU,并想用 GPU 训练模型。你不需要修改以下的代码,只需前期安装 GPU 版本的 TensorFlow,默认情况下,运算会优先使用 GPU。

知识点包括:

  1. 数据导入与数据处理。
  2. 构建神经网络。
  3. 训练神经网络。
  4. 评估模型的准确性。
  5. 保存并恢复创建的模型。

加载包

library(keras)
library(mlbench) #使用内部数据
library(dplyr)
library(magrittr)

加载数据

使用 1970 年波士顿 506 个人口普查区的住房数据作为例子。该数据集一共有14列,506 行。其中,因变量为 medv(自有住房的中位数报价, 单位 1000 美元),自变量为其他 13 个变量,包括:CRIM (城镇人均犯罪率)、ZN(占地面积超过 25000 平方英尺的住宅用地比例)、INDUS (每个城镇非零售业务的比例)等。

data("BostonHousing")
data <- BostonHousing
data %<>% mutate_if(is.factor, as.numeric)
knitr::kable(head(data[,1:12])) #由于呈现不了所有列,这里只展示 12 列的前 6 行数据。
crim zn indus chas nox rm age dis rad tax ptratio b
0.0063 18 2.31 1 0.538 6.575 65.2 4.090 1 296 15.3 396.9
0.0273 0 7.07 1 0.469 6.421 78.9 4.967 2 242 17.8 396.9
0.0273 0 7.07 1 0.469 7.185 61.1 4.967 2 242 17.8 392.8
0.0324 0 2.18 1 0.458 6.998 45.8 6.062 3 222 18.7 394.6
0.0690 0 2.18 1 0.458 7.147 54.2 6.062 3 222 18.7 396.9
0.0299 0 2.18 1 0.458 6.430 58.7 6.062 3 222 18.7 394.1

数据处理

首先,对 506 条数据进行划分。随机选择其中的 70% 数据作为训练样本,另外 30% 数据作为测试样本。

# 构建矩阵
data <- as.matrix(data)
dimnames(data) <- NULL

# 数据集划分
set.seed(1234)
ind <- sample(2, nrow(data), replace = T, prob = c(.7, .3)) #从 1,2 中有放回抽取一个数,概率分别为(0.7,0.3)。
training <- data[ind==1,1:13]
test <- data[ind==2, 1:13]
trainingtarget <- data[ind==1, 14]
testtarget <- data[ind==2, 14]

此外,由于各个特征的数据范围不同,直接输入到神经网络中,会让网络学习变得困难。所以在进行网络训练之前,先将该数据集进行特征标准化:输入数据中的每个特征,将其减去特征平均值并除以标准差,使得特征值以 0 为中心,且具有单位标准差。在 R 中可以使用 scale() 函数实现该效果。

数据集 BostonHousing 也可以直接通过 keras 包中的 dataset_boston_housing() 进行加载,并且已经提前划分好了训练集和测试集。本文使用的是 mlbench 包中数据集进行加载,主要是呈现划分数据集的过程。

# 数据标准化
m <- colMeans(training)
s <- apply(training, 2, sd)
training <- scale(training, center = m, scale = s)
test <- scale(test, center = m, scale = s)

构建模型

由于可用样本量很少,这里构建一个非常小的网络。使用 keras_model_sequential() 定义模型,并设置了 1 个隐藏层和 1 个输出层。激活函数为 relu。

model <- keras_model_sequential() %>% 
         layer_dense(units = 10, activation = 'relu', input_shape = c(13)) %>%
         layer_dense(units = 1)

通过 summary() 查看模型个层形状和参数,可以看到,总共包含 151 个参数。

summary(model)
## Model: "sequential"
## ________________________________________________________________________________
##  Layer (type)                       Output Shape                    Param #     
## ================================================================================
##  dense_1 (Dense)                    (None, 10)                      140         
##  dense (Dense)                      (None, 1)                       11          
## ================================================================================
## Total params: 151
## Trainable params: 151
## Non-trainable params: 0
## ________________________________________________________________________________

编译模型

编译主要需要设定三个部分:

  1. 损失函数:训练期间需要最小化的目标函数;
  2. 优化器:对数据和损失函数进行自我更新;
  3. 监控度量:训练和测试期间的评价标准。

该例子是一个典型的回归问题,我们使用的损失函数是均方误差(Mean Square Error,MSE),即预测和目标之间差异的平方。使用均方根传播方法(Root Mean Squared Propagation,RMSProp)作为该模型的优化器。使用 MSE 平均绝对误差(Mean Absolute Error,MAE)来监控网络。

model %>% compile(loss = 'mse', #损失函数
                  optimizer = 'rmsprop', #优化器
                  metrics = 'mae'#监控度量
                  )

优化器有很多种,详细介绍可参考:理论实践;损失函数和评价度量的选择,可以参考这篇博客

拟合模型

拟合模型时,RStudio 的 Viewer 会出现:随着迭代变化的损失函数值。如下所示:

mymodel <- model %>%
         fit(training,
             trainingtarget,
             epochs = 200,
             batch_size = 32,
             validation_split = 0.2)

图中的 loss 是指损失函数,val_loss 是指验证集下的损失函数(代码中设置的验证集划分比例为 0.2)。 mae 表示平均绝对误差,而 val_mae 表示验证集下的平均绝对误差。图中可以看到,随着训练轮数的增加,mae 与 loss 在不断减小并趋于稳定。

评估模型

使用 evaluate() 评估模型,给出预测结果。计算真实值和预测值的均方误差。

model %>% evaluate(test, testtarget)
##   loss    mae 
## 45.907  4.098
pred <- predict(model,test) #预测结果
mean((testtarget-pred)^2) #计算均方误差
## [1] 45.91

通过 ggplot2 包将预测结果和真实结果可视化。

library(ggplot2)
library(viridis)
library(ggsci)
ev_data = data.frame("Item" = seq(1,length(pred)),
                     "Value" = c(testtarget,pred),
                     "Class" = rep(c("True","Pred"),each = length(pred)))
ggplot(ev_data) +
  geom_line(aes(Item,Value,col = Class,lty = Class)) +
  scale_color_aaas() +
  theme_bw() + 
  theme(panel.grid = element_blank())

总体来看,预测结果还算不错,但是也有一些预测结果和真实值相差甚远。主要原因是,我们没有调整参数来使模型达到最优的效果。读者可以使用 K 折验证的方法来寻找最有的参数,例如:训练轮数,神经网络层数,各层神经元数等。具体案例可以见 《Deep Learning with R》的第 3.6.4 节

存储/加载模型

为了保存 Keras 模型以供未来使用,使用 save_model_tf() 函数保存模型。

save_model_tf(object = model, filepath = "BostonHousing_model") #保存模型

使用 load_model_tf() 函数加载模型,并对新数据集(下面使用测试集)进行预测。

reloaded_model <- load_model_tf("BostonHousing_model") #加载模型
predict(reloaded_model, test) #对新数据集进行预测

相关拓展

以上例子介绍了如何使用神经网络来处理简单问题(数据量较小的回归问题),但在实际过程中可能面临种种困难,包括:如何对数据进行预处理,如何进行特征筛选,如何解决过拟合问题,如何调整参数等。

由于笔者时间和能力有限,这篇推文不能一一给出系统的解决方案。下面给出一些相关资源以供读者翻阅。

该系列还会继续写下去,欢迎来我的公众号《庄闪闪的 R 语言手册》关注新内容。

相关教程

  1. RStudio 官网 TensorFlow 资料 和 AI 相关 博客;

  2. 书籍:《Deep Learning with R》,对应 代码中文翻译版本

  3. 入门教程:keras: R 语言中的深度学习

  4. 基于 Keras 和 TensorFlow 的深度学习的 研讨会

  5. 相关视频

    1. 基于R语言的深度学习:针对入学者
    2. Shirin 在 2020 年 R 会议的报告:《基于R语言的深度学习》会议笔记

防止读者加载不了视频,作者已将其搬运到 B 站 (1)(2),仅供大家学习使用。

  1. RStudio 官方给出的 Keras 速查表

发表/查看评论